Urinary Incontinence in the Bitch

Laurie Edge-Hughes,
BScPT, MAnimSt, CAFCI, CCRT

Canine Urinary Incontinence

- **Urinary Incontinence** =
 - Involuntary leakage of urine during storage

- Micturation disorders (non-neurologic):
 - 61% = Urethral sphincter mechanism incompetence
 - 23% = Detrusor overactivity (urge incontinence)
 - 6% = Bladder atony due to muscle weakness or medications
 - 3% = Anatomical or functional urethral obstruction (leading to 2ndary bladder atony)
Canine Urinary Incontinence

- Micturation control required autonomic, somatic & central nervous system inputs...

S. Rust et al. (The Veterinary Journal 184 (2010) 26-37)

Fig. 1. Automatic and somatic innervation of the bladder and urethra. ACh, acetylcholine; NE, noradrenaline; a, α-adrenergic receptors; p, p-adrenergic receptors; L1-L2, first and second lumbar vertebrae; S1-S3, first to third sacral vertebrae. Reproduced from Aitken and Leasure (2006) with the permission of Wolters Kluwer.

Canine Urinary Incontinence

- Neural control
 - Hypogastric nerve (sympathetic): L1 & 2 – L4
 - Pelvic nerve (parasympathetic): S1-S3
 - Pudendal nerve (somatic): S1 & S2

S. Rust et al. (The Veterinary Journal 184 (2010) 26-37)

Fig. 1. Automatic and somatic innervation of the bladder and urethra. ACh, acetylcholine; NE, noradrenaline; a, α-adrenergic receptors; p, p-adrenergic receptors; L1-L2, first and second lumbar vertebrae; S1-S3, first to third sacral vertebrae. Reproduced from Aitken and Leasure (2006) with the permission of Wolters Kluwer.
Canine Urinary Incontinence

- Micturation... What's the chain of events?
 - Bladder fills and passively adapts to the filling and increased urine volume.
 - THEN...
 - You have weak afferent stimuli via the pelvic nerve
 - = "hmm... I feel my bladder filling... I might have to pee!"
 - OR... (you ignore that for a while)
 - Stretch receptors in the detrusor muscle are activated which signals via the hypogastric nerve
 - "OMG! Ow! OMG... I have to pee NOW!"

Canine Urinary Incontinence

- Micturation... What's the chain of events?
 - When the bladder reaches threshold volume...
 - Voiding is initiated by a parasympathetic discharge, which initiates the micturation reflex.
 - Detrusor muscle is activated (Squeeze!!)
 - Sympathetic & somatic nerve stimulations are inhibited (Let her go boys!!)

- And voluntary cortical control of this occurs at the level of the urethral striated musculature via the pudendal nerve (Don’t pee your pants!)
Canine Urinary Incontinence

- Urethral Sphincter-Related Incontinence
Canine Urinary Incontinence

- Pathophysiology URETHRAL SPHINCTER-related incontinence
 - Found in 4.5 – 20% of spayed bitches

Urethral hypotonicity
- Associated with ↓ urethral resistance
- Urine leakage occurs when intra-abdominal pressure rises (i.e. during recumbency or barking)

Canine Urinary Incontinence

- Pathophysiology URETHRAL SPHINCTER-related incontinence
- Associations:
 - Tone of the urethra
 - Bladder neck position
 - Urethral length
 - Neutering
 - Body size (large & giant breeds)
 - Breed (Dobbies, Old English, Rotties, Weims, Springer Spaniels, & Irish Setters)
 - Docked tail
 - Obesity
Canine Urinary Incontinence

- Pathophysiology URETHRAL SPHINCTER-related incontinence
- What has been found?
 - Reduced maximal urethral closure pressure (MUCP)
 - Decreased functional profile length (FPL)
 - The bladder sits more caudal – into the pelvis (more than 5% of the bladder length is located inside the pelvis)... is thought to be associated with a shorter urethra. (This position could alter the pressure transmission between the bladder & urethra)

- After sterilization,
 - A decrease in smooth muscle is observed in both bladder and urethra... whilst an increase in the volume of vascular urethral plexus is observed in the first quarter of the urethra.
 - The total number of types I and II striated fibres is decreased. NOTE: (type II fibres increase in volume.) but (type I fibres contribute to resting urethral tone... so could directly contribute to weakness of the urethral closure mechanism)
 - Urethral length is shorter in spayed bitches
 - Spayed bitches have reduced MULP, FPL, and integrated pressure.
Canine Urinary Incontinence

- Pathophysiology URETHRAL SPHINCTER-related incontinence
- What has been found?
 - 90% of incontinent bitches are spayed. 20% of spayed bitches develop urinary incontinence.
 - Estrogen deficiency is the most common explanation... HOWEVER studies have found no difference in estrogen concentrations in spayed & non-spayed females.
Canine Urinary Incontinence

- **Pharmacology** for URETHRAL SPHINCTER-related incontinence

- **Urethral sphincter mechanism incompetence**
 - Phenylpropanolamine
 - Ephedrine
 SID effects: Restlessness, hypertension, tachycardia, anxiety, excitability

 - Oestriol
 SID effects: Vulva swelling, attraction of males, & uterine bleeding between normal cycles

Canine Urinary Incontinence

- **Pharmacology** for URETHRAL SPHINCTER-related incontinence

- **Functional urethral outlet obstruction**
 - Phenoxybenzamine
 - Prazosin
 - Diazepam
 - Dantrolene

 General SID effects: Hypotension, hypertension, intraocular pressure, tachycardia, GI upset, nasal congestion, sedation, weakness, dizziness, headache.
Canine Urinary Incontinence

- **Surgery** for URETHRAL SPHINCTER-related incontinence
- **Colposuspension:**
 - Vagina is anchored to prepubic tendon
 - **GOAL:**
 - to relocate the bladder neck in an intra-abdominal position,
 - to increase urethral length & to increase functional urethral length,
 - to increase leak-point pressure, &
 - to improve the transmission of intra-abdominal pressure changes to the proximal urethra.

Effectiveness (3 studies): 40 – 53% cured; 37 – 42% improved; 9 – 18% failed to respond
1-year follow-up: 14% cured; 33% improved with surgery alone... Surgery plus medication = 38% cured & 43% improved.
Canine Urinary Incontinence

- **Surgery** for URETHRAL SPHINCTER-related incontinence

- **Colposuspension:**

Canine Urinary Incontinence

- **Surgery** for URETHRAL SPHINCTER-related incontinence

- **Urethropexy:**
 - Urethra anchored to ventral abdomen wall at level of cranial pubic brim

- **GOAL:**
 - Relocation of the bladder neck into a more cranial position.

- **Effectiveness**
 - 56% cured; 27% improved; 17% failed
Canine Urinary Incontinence

- **Surgery** for URETHRAL SPHINCTER-related incontinence
- **Urethral submucosal injections:**
 - Endoscopic injection of collagen in three submucosal sites of the proximal urethra;
 - A non-invasive way to increase urethral resistance.

Canine Urinary Incontinence

- **Surgery** for URETHRAL SPHINCTER-related incontinence
- **Urethral submucosal injections:**
 - Effectiveness
 - Continence from a single injection of purified bovine collagen yielded continence lasting from 2 – 42 months (mean 21 mo)… in 43% of dogs.
 - Recurrence is common
Canine Urinary Incontinence

- **Surgery** for URETHRAL SPHINCTER-related incontinence
- **Other surgeries (few studies, few cases):**
 - Artificial sphincters (only tried in 14 dogs – 2 studies)
 - Cystourethropexy (1 studies, 10 dogs)
 - Sling urethroplasty (2 studies)
 - Transpelvic sling procedure with/without colposuspension (1 study)

Canine Urinary Incontinence

- **Bladder-Related Incontinence**
Canine Urinary Incontinence

- Pathophysiology BLADDER-related incontinence
 - Caused by detrusor over-activity or atony

 Detrusor Over-activity
 - = detrusor instability, described as involuntary detrusor contractions

 Detrusor Atony
 - = may be 1° or 2° to an increase in urethral resistance of anatomical or functional origin

Clinical signs:
- Nocturia (waking at night needing to urinate)
- Pollakiuria (abnormally frequent urination)
- Urinary incontinence
- Urgency
Canine Urinary Incontinence

- Pathophysiology BLADDER-related incontinence

Detrusor atony
- Clinical signs:
 - Stranguria (slow, painful urination caused by muscular spasms of the bladder or urethra)
 - Overflow incontinence
 - Could lead to tearing of the detrusor junctions, resulting in weaker, uncoordinated, or absent bladder contractions
 - May have a relation with neutering

Canine Urinary Incontinence

- Pharmacology for BLADDER-related incontinence

For Detrusor Over-Activity

<table>
<thead>
<tr>
<th>Anti-muscarinic Drugs</th>
<th>Side effects of anti-muscarinic drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propantheline</td>
<td>Sedation</td>
</tr>
<tr>
<td>Oxybutinin</td>
<td>Vomiting</td>
</tr>
<tr>
<td>Imipramine</td>
<td>Constipation</td>
</tr>
<tr>
<td>Flavoxate</td>
<td>Urinary retention</td>
</tr>
<tr>
<td>Emepronium bromide</td>
<td></td>
</tr>
</tbody>
</table>
Canine Urinary Incontinence

- **Pharmacology** for BLADDER-related incontinence
 - **For Detrusor Atony**
 - Bethanechol
 - Side effects: vomiting, diarrhea, salivation, anorexia

Canine Urinary Incontinence

- **Conclusions**
 - A comparison between urethral sphincter mechanism incompetence and stress urinary incontinence in women is of interest since both conditions are frequently described during hypooestrogenism.
 - The initial treatment is usually medical.
 - Colposuspension and urethropexy offer a rate of complete continence of about 50%. Those techniques are however invasive.
Canine Urinary Incontinence

References:

Canine Urinary Incontinence

And so... what can we learn from humans?

(and in particular human physiotherapy treatment for stress urinary incontinence in women)

Next video: Management of Urinary Incontinence in Women